近日有報導(dǎo),中科院上海硅酸鹽所研制出高性能超級電容器,暫且放開不懂技術(shù)的記者"充7秒鐘續(xù)航35公里"的故弄玄虛,但其能量密度達41wh/kg (基于活性物質(zhì)為63wh/kg),比現(xiàn)生產(chǎn)的超級電容器5-7wh/kg,確實是一個很大的進步,值得稱贊!但是,如發(fā)條橙子所問:《中科院石墨烯電池新材料真能帶飛電動車產(chǎn)業(yè)?》,這則是不少業(yè)內(nèi)人士所關(guān)心的問題。這位記者提出的疑問歸納起來有:1、生產(chǎn)的成本問題;2、制備工藝工業(yè)化的可行性,特別是氮化工藝的環(huán)境影響問題;3、能量密度離電動汽車的要求還差得太遠,如何解決的問題。
一、成本問題
本人認為,是有可能的。例如:采用溶膠凝膠法用石墨烯微片低成本地制備石墨烯氣凝膠三維塊。眾多的研究文獻已公開了這方面的技術(shù),浙江大學(xué)高超教授研究的三維石墨烯氣凝膠制備技術(shù)則是這類技術(shù)的榜樣。發(fā)條橙子的文章中也指出:"3D石墨烯泡沫具有很大的比表面積,以及相應(yīng)帶來的良好的三維導(dǎo)電網(wǎng)絡(luò),用這樣的集流體會給材料的性能帶來很多加成,在這方面中科院金屬所成會明院士組有不少工作可以參考。"
二、氮化處理對環(huán)境的影響問題
若工業(yè)化生產(chǎn)中采用實驗室中常用的濃硝酸處理氮化工藝,確實環(huán)評很困難通過。
在某國家級產(chǎn)業(yè)中心工程中,已使用了一種簡單、低成本地解決氮氧化物污染的技術(shù)。后巴斯夫為獲得此技術(shù)和其它關(guān)鍵技術(shù)收購了此公司至今也已十多年,生產(chǎn)線還在正常生產(chǎn)。若中科院上海硅酸鹽所的超級電容器工業(yè)化時采用此凈化工藝即可解決對環(huán)境影響的問題。
三、能量密度問題
能量密度是超級電容器的"死穴"。為提高超級電容器的能量密度,國內(nèi)外都投入了大量的資金和人力在研究。但是,國內(nèi)外研究的路線,基本是研究新型電極材料以提高電極的比容量,或研究于電極表面產(chǎn)生化學(xué)反應(yīng)的復(fù)合型電極,中科院上海硅酸鹽所的超級電容器公開之前,超級電容器的能量密度問題還沒見突破性進展。
眾所周知,提高超級電容器的工作電壓即可提高電容器的能量密度,因為電容器的儲能量與電容器的工作電壓的平方成正比。
超級電容器是建立在雙電層理論基礎(chǔ)之上的非法拉第電容器。雙電層理論19 世紀由Helmhotz 等提出。Helmhotz 模型認為電極表面的靜電荷從溶液中吸附離子,它們在電極/ 溶液界面的溶液一側(cè)離電極一定距離排成一排,形成一個電荷數(shù)量與電極表面剩余電荷數(shù)量相等而符號相反的對壘界面層。
為什么電極與電解液接觸的表面不發(fā)生正負電的中和呢?至今還沒見任何文獻解釋此問題。
Helmhotz雙電層理論提出至今已一百多年了,更精密的實驗儀器出現(xiàn),你可從電泳實驗中觀察到,正負電荷/離子于電極、電解液界面上對壘時,接近電極的電解液層中有一電中性層出現(xiàn)。本人認為正是電解液中與電極接觸的液膜發(fā)生極化產(chǎn)生了電中性層,阻止了正負電荷中和。當(dāng)超級電容器的工作電壓高于電解液的電解電壓致電解液分解時,極化膜被破壞,將導(dǎo)致超級電容器損壞,因此超級電容器的工作電壓受制于電解液的溶劑的分解電壓。
固態(tài)極化膜的工作電壓達到3V甚至10V將是非常容易的事,你可知,美國EEStor的高介電常數(shù)薄膜電容器的介電膜工作電壓已達到了3500V。極化膜超級電容器的出現(xiàn)將會改變儲能器的游戲規(guī)則。